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SUMMARY

Risk tolerance, the degree to which an individual is
willing to tolerate risk in order to achieve a greater
expected return, influences a variety of financial
choices and health behaviors. Here we identify
intrinsic neural markers for risk tolerance in a large
(n = 108)multimodal imaging dataset of healthy young
adults, which includes anatomical and resting-state
functional MRI and diffusion tensor imaging. Using a
data-driven approach, we found that higher risk toler-
ance was most strongly associated with greater
global functional connectivity (node strength) of and
greater gray matter volume in bilateral amygdala.
Further, risk tolerance was positively associated
with functional connectivity between amygdala and
medial prefrontal cortex and negatively associated
with structural connectivity between these regions.
These findings show how the intrinsic functional and
structural architecture of the amygdala, and amyg-
dala-medial prefrontal pathways, which have previ-
ously been implicated in anxiety, are linked to individ-
ual differences in risk tolerance during economic
decision making.

INTRODUCTION

To make adaptive choices, decision makers must integrate their

beliefs about the possible outcomes of each action with their

evaluation of those possible outcomes. However, one challenge

that decision makers confront is that there is often uncertainty

about what outcomes will result from a given action. A particular

form of uncertainty, when information about the probability of

each possible outcome is known, is referred to as ‘‘risk’’ (von

Neumann and Morgenstern, 1994). Examples of risk include

the outcomes of a fair coin toss, die roll, or roulette wheel. An

individual’s risk tolerance (also referred to as ‘‘risk attitude’’ or

‘‘risk preference’’), their willingness to accept risk in order to

gain a greater expected return, can be measured by assessing

preferences between small-but-certain and larger-but-risky

rewards (Glimcher, 2008; Levy et al., 2010; Gilaie-Dotan et al.,

2014). Understanding individual differences in risk tolerance is
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important, because risk tolerances are not only associated

with financial decisions (e.g., investments, insurance) but also

with smoking (Lejuez et al., 2003, 2005; Schepis et al., 2011),

health behaviors (Anderson and Mellor, 2008), migration (Barsky

et al., 1997; Dohmen et al., 2005), self-employment status (Eke-

lund et al., 2005), susceptibility to mental illness (Branas-Garza

et al., 2007; Krain et al., 2008), and patients’ attitude to treatment

(Fraenkel et al., 2003; Barfoed et al., 2016). Here we examined

neural predictors of individual differences in risk tolerance using

a multimodal neuroimaging approach.

Over the past decade, functional neuroimaging studies have

identifiedmultiple brain regions engagedwhenmaking decisions

involving risk (Mohr et al., 2010; Knutson and Huettel, 2015).

Activity in the parietal cortex reflects the probability of outcomes

(Huettel et al., 2006; Studer et al., 2015); activity in medial

prefrontal cortex (mPFC) and the ventral striatum (i.e., nucleus

accumbens [NAcc]) reflects an integration of the magnitude

and probability of rewards for given risky options (Ernst et al.,

2004; Krain et al., 2008; Levy et al., 2010); and activity in the ante-

rior insula (aINS), anterior cingulate cortex (ACC), and amygdala

reflect the degree of risk or uncertainty (Kuhnen and Knutson,

2005; Preuschoff et al., 2008; De Martino et al., 2010). Further-

more, neural activity, particularly in the NAcc, mPFC, and

aINS, predicts the choice that the individual will make (Kuhnen

and Knutson, 2005; Huang et al., 2014; Leong et al., 2016).

There is recent interest, though, in moving beyond predicting

choice from simultaneously measured task-evoked brain activa-

tion, toward predicting behavior at greater remove, by testing

whether task-independent measures of brain structure and

function, from anatomical or resting-state functional MRI (RS-

fMRI) or diffusion-tensor imaging (DTI), can predict decision-

making tendencies (Fumagalli, 2014; Kable and Levy, 2015).

For instance, increased gray matter volume (GMV) in the right

posterior parietal cortex (rPPC) is associated with increased

risk tolerance (Gilaie-Dotan et al., 2014; Grubb et al., 2016).

Examining multiple neuroimaging modalities together, however,

may provide an even better understanding of the complex inter-

play among brain structure and function and behavior. In a

recent example, the preference for positively skewed gambles

(lotteries that yield large amounts with small chances) was asso-

ciated with the coherence (fractional anisotropy [FA]) of the white

matter (WM) tract connecting aINS and NAcc (Leong et al.,

2016), and activity in the NAcc during choice mediated the link

between tract structure and choice behavior. To our knowledge,

there have been no similar multimodal imaging investigations of
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Figure 1. Risk Tolerance Task

(A) A depiction of one trial of the task. Participants

chose between a smaller-certain reward (100%

chance of $20) and a larger-riskier reward (e.g.,

48% chance of $80) for each of 120 trials. The

smaller-certain reward was fixed at 100% chance

of $20 and the larger-risky reward was varied from

trial to trial. Each trial began with the presentation

of the risky option; the standard certain option was

not shown to simplify the display. When subjects

made their choice, a marker indicating that choice

(‘‘✔’’ if the risky option was chosen, ‘‘7’’ if the

certain option was chosen) appeared for 1 s.

Subjects had 4 s to make their choice.

(B) Risky options used in the task. Each point

represents the risky option offered on a single trial.

The x axis indicates the reward amount ($) and the

y axis indicates the reward probability (%).
neural markers for basic risk tolerances; identifying such

markers is the goal of the present study.

We therefore examined how individual differences in risk toler-

ance are linked with individual variations in intrinsic functional

and structural brain signatures, including resting-state functional

connectivity (RSFC), GMV, and WM fiber tract strength, using

multimodal, task-independent, brain imaging data in a large

sample of healthy young adults (n = 108). We first identified

associations between an individual’s risk tolerance and different

brain region’s node strength, a graph-theoretical measure of the

centrality of a region calculated from RS-fMRI (Rubinov and

Sporns, 2010; Wang et al., 2010). This analysis highlighted the

bilateral amygdalae, structures previously linked to aspects of

risky decision making. To further characterize this association,

we tested how RSFC to the amygdala was associated with risk

tolerance using seed-based connectivity analysis, which found

an association between amygdala-medial prefrontal connectiv-

ity and risk tolerance. We then identified further associations

between amygdala structure (i.e., GMV) and amygdala-medial

prefrontal structural connectivity (i.e., WM tract strength) and

risk tolerance. Each of the identified features (structure, struc-

tural connectivity, and functional connectivity) explains unique

variance in risk tolerance. This series of results identifies a

coherent set of relationships between risk tolerances and multi-

ple intrinsic functional and structural features of the amygdala

and its connections with medial prefrontal cortex.

RESULTS

Risk tolerances were assessed using a well-validated task (Fig-

ure 1A; Kable et al., 2017). One hundred and eight participants

(age [mean ± SD], 24.36 ± 4.69 years old; 44 females; risk toler-

ance a, 0.69 ± 0.31) made 120 binary choices between a certain

gain of $20 and a larger-risky reward that varied from trial to trial

(Figure 1B). We modeled the subjective value (SV) for each

option using the functional form for expected utility. In our

case, SV = p 3 Aa, where p and A are the reward probability

and amount of winning, respectively, since there is always a

1�p chance of receiving nothing. a is the risk tolerance param-

eter; larger a values mean increased risk tolerance (see STAR

Methods for a detailed explanation).
Neural Correlates of Risk Tolerance
We first tested whether risk tolerance was associated with node

strength, a graph theoretic measure of the importance or central-

ity of a region in the resting-state functional connectivity

network. Using a standard whole-brain parcellation, we calcu-

lated node strength of each parcel in the RS-fMRI dataset. The

node strengths of left and right amygdalae had the highest cor-

relation with risk tolerance (left amygdala, r = 0.265, p = 0.007;

right amygdala, r = 0.261, p = 0.007; Figures 2A, 2B, and 2C).

Greater amygdala node strength was associated with higher

risk tolerance. Though these effects survived a false-positive

adjustment used in previous studies of network measures (Lynall

et al., 2010; Cocchi et al., 2012), they did not survive Bonferonni

correction. Nonetheless, the fact that the strongest relationship

between node strength and risk tolerance was in the amygdala

led us to focus on the amygdala in subsequent analyses.

Though node strength gives an overall measure of connectiv-

ity, it does not provide anatomic specificity regarding the most

important connections driving the association with risk toler-

ance. We next performed whole-brain seed-based (i.e., seed-

to-voxel-based) connectivity analysis to further examine the

relationship between amygdala RSFC and risk tolerance. There

was significant positive correlation between risk tolerance and

RSFC between the left amygdala and mPFC dorsally in the

ACC (mPFC/ACC; peak MNI x, y, z coordinate = 3, 9, 27; peak

z value = 3.68) and between risk tolerance and RSFC between

the right amygdala and mPFC ventrally along the gyrus rectus

(mPFC/rectus; x, y, z = �6, 9, �15; z value = 3.73; cluster-form-

ing height threshold of p < 0.001, uncorrected, corrected for

multiple comparisons using a cluster extent threshold of

p < 0.05; Figure 3). The areas of mPFC identified by their connec-

tivity to the left and right amygdala seeds overlapped at a height

threshold of p < 0.005 (uncorrected) and cluster size correction

to p < 0.05 for multiple comparisons across the whole brain (Fig-

ure 3). Greater amygdala-mPFC functional connectivity was

associated with higher risk tolerance.

Next, based on our RSFC results described above, we exam-

ined whether risk tolerance was also associated with structural

connectivity between the amygdala and mPFC. We defined

mPFC targets from the above seed-basedRSFC results and per-

formed probabilistic tractography using diffusion imaging data
Neuron 98, 394–404, April 18, 2018 395



Figure 2. Significant Correlations between

Risk Tolerance and Node Strengths of

Resting-State Network

(A) Amygdala seeds (blue for left hemisphere; red

for right hemisphere) identified by AAL template.

(B) Brain regions with the highest correlation co-

efficients (top 10%) between risk tolerance and

node strength, calculated using graph theoretical

analysis of resting-state fMRI.

(C) Partial correlation scatterplot between risk

tolerance and left (right) amygdala node strength.

For illustration purposes, this scatterplot was

generated by performing Pearson correlation

analysis between residuals after regressing out

age, sex, IQ, and mean framewise displacement

(motion) in the resting state scan. L, left; R, right;

Sup, superior; Inf, inferior; Orb, orbito; Oper,

opercular; AMY, amygdala.
(Figure 4A). The tracts between the amygdala and the mPFC

coursed medially through ventral striatal regions, consistent

with findings from previous probabilistic tractography studies

(Croxson et al., 2005; Kim and Whalen, 2009; Clewett et al.,

2014; see Figure 4B for a single subject map identified using

deterministic tractography for illustration purposes only). The

tract strength between right amygdala and mPFC/rectus

was significantly negatively correlated with risk tolerance (r =

�0.279, p = 0.004; Figure 4C). The tract strength between left

amygdala and mPFC/ACC was also negatively correlated with

risk tolerance (r =�0.140, p = 0.155; Figure 4D), though this rela-

tionship was not significant. Thus, greater right amygdala-mPFC

tract strength was associated with lower risk tolerance.

There was an inverse relationship between WM tract strength

and RSFC. The tract strength between right amygdala and

mPFC/rectus exhibited a non-significant negative correlation

with RSFC strength between these two regions (r = �0.177,

p = 0.070), while the tract strength between left amygdala and

mPFC/ACC exhibited a significant negative correlation with

RSFCstrengthbetween these two regions (r =�0.292, p=0.002).

We confirmed that the laterality of the structural connectivity

effect was not due to using different target ROIs for each hemi-

sphere. The reconstructed WM tract between amygdala and

frontal cortex is particularly strong to the ventral part of mPFC

(i.e., medial orbitofrontal cortex [OFC]), and the target ROI

(mPFC/rectus) defined by RSFC for right amygdala is more

ventrally located than that (mPFC/ACC) for left amygdala. To

address this issue, we conducted additional analyses using

symmetric anatomical ROIs for ventral mPFC, defined according

to Automated Anatomical Labeling (AAL) template labels

(Tzourio-Mazoyer et al., 2002), including both medial OFC and
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rectus. This analysis confirmed that risk

tolerance had a significant association

with only the tract strength between

right amygdala and ventral mPFC

(r = �0.242, p = 0.013 for right hemi-

sphere; r = �0.132, p = 0.179 for left

hemisphere).

We then examined the relationship

between risk tolerance and amygdala
structure. Amygdala GMV in each hemisphere was significantly

positively correlated with risk tolerance (left amygdala, r =

0.343, p = 0.0004; right amygdala, r = 0.270, p = 0.0057; Figure 5).

Greater amygdala GMV was associated with higher risk

tolerance.

One potential concern is that we may have pursued a different

set of connectivity analyses, leading to a different set of findings,

had we examined the different imaging modalities in a different

order. Reassuringly, though, a whole-brain analysis of GMV

also highlights the amygdala, further justifying our focus above

on amygdala structural and functional connectivity. A whole-

brain analysis revealed that GMV in bilateral amygdalae had

the strongest associations with risk tolerance, in the same way

that the node strengths of bilateral amygdalae had the strongest

associations with risk tolerance (Figure S1). Therefore, regard-

less of data modality we initially use for data-driven analyses,

individuals’ risk tolerance has a stronger association with the

functional and structural features of amygdala than with any

other brain region.

Given previous reports of a positive relationship between risk

tolerance and GMV in the right posterior parietal cortex (rPPC)

(Gilaie-Dotan et al., 2014; Grubb et al., 2016), we also conducted

an ROI analysis to test whether this previously reported associ-

ation replicates in the present sample. Consistent with previous

studies, this ROI analysis revealed a positive association

between rPPC GMV and risk tolerance (r = 0.174, p = 0.078),

though this relationship was not significant in our data.

Next, we confirmed that none of our results depend on the spe-

cific functional form of risk tolerance that we used. We regressed

each of the amygdala features above against (1) risk aversion

parameters from two forms of risk-return/mean-variance model,



Figure 3. Brain Regions Showing Significant

Correlations between Risk Tolerance and

Resting-State Functional Connectivity to

the Amygdala

Risk tolerance was significantly positively corre-

lated with RSFC between left amygdala and

mPFC/ACC (at a height p < 0.001 [sky] or 0.005

[blue]) and RSFC between right amygdala and

mPFC/rectus (at a height p < 0.001 [yellow] or

0.005 [red]). These clusters, identified at a height

p < 0.005 and an extent corrected p < 0.05,

partially overlapped (orange).
an alternative to the expected utility model (Markowitz, 1959;

Weber et al., 2004) and (2) the percentage of risky choices, as

a model-free estimate of risk attitudes. There was a strong corre-

spondence between the risk tolerances estimated from the

expected utility model and both the risk aversion parameters

estimated from the risk-return models (r = �0.93 and �0.92 for

the classic andWeber formulations of risk-return) and the overall

percentage of risky choices (r = 0.92). Not surprisingly given this

correspondence, all of the amygdala features identified above

were also significantly correlated with both the risk aversion

parameters from the risk-return models and the overall percent-

age of risky choices (Table 1).

Regression Models Predicting Individual Risk
Tolerances from Brain Variables
Finally, we examined whether these various measures of func-

tional connectivity, structural connectivity, and structure each

explain independent or overlapping variance in risk tolerance.

We did this by performing a linear regression analysis including

all of the functional and structural features of the amygdala for

a given hemisphere to explain risk tolerance. Of note, significant

features in such a model explain variance in risk tolerances over

and above that explained by all other features. This is because

the t-statistic for a given independent variable in a multiple

regression is proportional to the correlation between the depen-

dent variable and that portion of the independent variable that is

uncorrelated with the remaining independent variables (Cohen

et al., 2003). In a regression analysis for the left hemisphere,

RSFC strength and relative GMV (i.e., absolute GMV divided

by total intracranial volume) of the left amygdala were significant

predictors of risk tolerance (p < 0.05; Table 2). In a regression

analysis for the right hemisphere, RSFC strength, relative

GMV, and tract strength of the right amygdala were significant

predictors for risk tolerance (p < 0.05; Table 2). These regres-

sions show that each of these different measures account for

unique variance in risk tolerances.

We also ran linear regressions with each of the measures indi-

vidually to allow for a comparison of the variance explained by

each measure. The amount of variance explained (R2) was

0.070 for node strength alone, 0.188 for RSFC alone, 0.101 for

GMV alone, and 0.020 for tract strength alone for left hemisphere

(compared to 0.274 for the combined model); these values were

0.065, 0.183, 0.065, and 0.077 for the respective variables in the

right hemisphere (compared to 0.273 for the combined model).

Though RSFC appears to explain the most variance in risk toler-

ance, we caution against this interpretation as thismeasure is the
only one that involves a degree of selection (the MPFC region

was selected based on the peak RSFC correlation with risk toler-

ance) rather than using effects calculated in pre-determined

ROIs. However, these results do further reinforce the conclusion

that RSFC, GMV, and tract strength (in the right hemisphere)

account for unique variance in risk tolerance, as the coefficients

on these variables does not change dramatically when all of the

variables are included in the regression and the total variance

explained is near additive when considering these variables

separately and together.

DISCUSSION

To identify neural markers of risk tolerance, we examined

the relationship between an individual’s risk tolerance and

multimodal, context-independent, brain measures, including

functional connectivity from RS-fMRI, structural connectivity

from DTI, and structural features (specifically, GMV) from T1

anatomical imaging, in a large sample of healthy young adults.

We found several intrinsic functional and structural brainmarkers

of risk tolerances. Individuals who were more tolerant of risk

showed greater overall connectivity (node strength) of the amyg-

dala, specific increases in RSFC between the amygdala and

mPFC, reduced WM tract strength between the amygdala and

mPFC, and larger GMV in the amygdala. Of these measures,

amygdala-mPFC RSFC and amygdala GMV for each hemi-

sphere made the largest contributions to predicting risk toler-

ance. These results identify multiple intrinsic structural and

functional features of the amygdala that are associated with indi-

vidual differences in risk tolerance.

Our investigation focused solely on tolerance for risk (a form of

uncertainty when the probability of each possible outcome is

known), under conditions where only positive outcomes (i.e.,

winning money) were possible. As such, our data do not speak

directly to whether structural and functional features of the

amygdala and amygdala-mPFC connectivity are related to indi-

vidual differences in tolerance for ambiguity (a form of uncer-

tainty when the probability of each possible outcome is un-

known; Ellsberg, 1961), risk tolerance for losses (which can

differ from that of gains; Kahneman and Tversky, 1979), or loss

aversion (the relative weighting of gains and losses; Kahneman

and Tversky, 1979). Future research is thus needed to determine

whether the markers we have noted are also associated with

other individual differences in decision making under uncer-

tainty, or are rather unique to risk tolerance in the domain of

gains. Previous work, however, suggests that the amygdala
Neuron 98, 394–404, April 18, 2018 397



Figure 4. Results from Structural Connectivity Analyses

(A) Group probabilitymaps of amygdala tomPFCwhitematter tracts (blue for left hemisphere; red for right hemisphere) are illustrated in coronal, sagittal, and axial

views. For illustration purposes, individual subject’s probabilistic tractography results were transformed into standard space, binarized, and summed across all

subjects. Finally, the summed tract images were thresholded to show only overlapping pathways in at least 54 of 108 participants.

(B) A single subject map of amygdala to mPFC tract identified using deterministic tractography (for illustration purposes only).

(C) Partial correlation scatterplot between risk tolerance and tract strength from right amygdala to mPFC/rectus.

(D) Partial correlation scatterplot between risk tolerance and tract strength from left amygdala tomPFC/ACC. For illustration purposes, (C) and (D) were generated

by performing Pearson correlation analysis between residuals after regressing out age, sex, and IQ.
and amygdala-mPFC interactions play a more general role in

decision making and learning, for both gains and losses. For

example, task-induced functional activity in amygdala reflects

the value of both risky and ambiguous outcomes (Levy et al.,

2010) or the degree of uncertainty (ambiguity > risk; Hsu et al.,

2005) during decision making under uncertainty and is associ-

ated with risk (Huettel et al., 2006) or loss avoidance (Sokol-

Hessner et al., 2009) and with the effect of loss-gain framing

(De Martino et al., 2006). These findings are consistent with

extensive work in animal models demonstrating an important

role for the amygdala, and amygdala-mPFC interactions, in the

evaluation of potential future outcomes during learning and deci-

sion making (Floresco et al., 2008; Murray and Wise, 2010).

Anatomical tracing studies have identified robust bidirectional

connections between the amygdala and mPFC (Amaral and

Price, 1984; Croxson et al., 2005; Kim et al., 2016). The firing

of neurons in both regions reflects the value of expected out-

comes during reward learning (Baxter andMurray, 2002; Schultz

et al., 2008; Morrison et al., 2011), lesioning one of these regions

disrupts the value signals in the other (Rudebeck et al., 2013),

and disrupting the connection between these regions impairs

flexible reward learning (Chau et al., 2015). Researchers have

suggested that these two regions make dissociable contribu-

tions to reinforcement learning, with the amygdala being impor-
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tant for forming cue-outcome associations/expectancies, and

the OFC/mPFC using such reward expectancy information to

guide behavior in a way that enhances or inhibits stimulus-driven

responses mediated by the amygdala (Pickens et al., 2003;

Holland and Gallagher, 2004). In line with this notion, neuroimag-

ing studies of reward-related choice and learning in humans

have also revealed differential contributions of the amygdala

and mPFC to reward expectancy and behavioral choice (Arana

et al., 2003; Hampton et al., 2007). For example, Arana et al.

(2003) showed that the amygdala activity covaried with the sub-

jective incentive value of foods regardless of whether a choice

was required, whereas the mPFC activity correlated with the

value when making a choice.

Our findings linking structural and functional features of the

amygdala and amygdala-prefrontal interactions to risk tolerance

are also broadly consistent with recent work linking the same

markers with anxiety. The amygdala is well known to be impor-

tant in processing fear and threat (Adolphs, 2008), as well as

uncertainty-related anxiety (Grupe and Nitschke, 2013). For

example, uncertain anticipation of negative emotional pictures

recruits the amygdala (Sarinopoulos et al., 2010) and such amyg-

dala activation is increased in patients with anxiety disorders

relative to healthy individuals (Williams et al., 2015). Additionally,

patients with anxiety disorders show heightened resting



Figure 5. Partial Correlation Scatterplot

between Risk Tolerance and Amygdala

Gray Matter Volume

For illustration purposes, this scatterplot was

generated by performing Pearson correlation

analysis between residuals after regressing out

age, sex, IQ, and total intracranial volume.
metabolic activity in the amygdala (Semple et al., 2000; Furmark

et al., 2002). The reciprocal connections between the amygdala

and mPFC play a critical role in fear learning and extinction

(Marek et al., 2013), as well as the emotional regulation of nega-

tive affect (Banks et al., 2007; Pessoa, 2008; Motzkin et al.,

2015), and have been implicated in anxiety. Individuals with a

genetic predisposition to anxiety exhibit not only increased

amygdala activation during processing of negative emotion,

but also reduced amygdala volume and reduced amygdala-

mPFC functional connectivity (Pezawas et al., 2005). Indeed,

lower amygdala-mPFC RSFC is correlated with higher state

anxiety scores in healthy individuals (Kim et al., 2011) and higher

anxiety severity in patients with anxiety disorders (Dodhia et al.,

2014; though see Satterthwaite et al., 2016). Previous DTI

studies have also reported that higher FA in amygdala-mPFC

tract was correlated with higher trait anxiety levels (Clewett

et al., 2014; Modi et al., 2013), though other studies have re-

ported the opposite association (Kim and Whalen, 2009; Kim

et al., 2016). Thus, the direction of the associations that we

observed between risk aversion and amygdala GMV, amyg-

dala-mPFC RSFC, and amygdala-mPFC WM tract strength are

similar to those previously identified between these markers

and anxiety. This demonstrates that these same markers extend

to predicting the avoidance of risky options during decision

making.

Given evidence that risk tolerance evolves with age (Tymula

et al., 2013; Grubb et al., 2016), it is interesting to note that func-

tional and structural connectivity between the amygdala and

mPFC also exhibits age-related changes, showing an increase

in positive RSFC (Gabard-Durnam et al., 2014) and a decline in

the coherence of fibers between these two regions from adoles-

cent to young adults (Burzynska et al., 2010; Clewett et al., 2014).

Furthermore, from young adulthood to old age, the relationship

between functional and structural connectivity between amyg-

dala and mPFC evolves, switching from negative functional-

structural connectivity coupling (as we observe here) to positive

coupling (Ford and Kensinger, 2014; though see Hagmann et al.,

2010). Task-based functional connectivity during emotional

processing also exhibits developmental effects, shifting from

positive amygdala-mPFC connectivity to negative connectivity

from childhood through young adulthood (Gee et al., 2013; Wu

et al., 2016), which has been interpreted as evidence that
bottom-up signals from amygdala to

mPFC emerge earlier than top-down

regulatory control of mPFC on amygdala

(Etkin et al., 2011; Gee et al., 2013; Wu

et al., 2016). An interesting question for

future research will be whether age-

related changes in amygdala-mPFC
structural and functional connectivity mediate changes in risk

tolerance over the lifespan, as has recently been argued for

another brain marker of risk tolerance, GMV in the right posterior

parietal cortex (Gilaie-Dotan et al., 2014; Grubb et al., 2016).

Although previously noted in young adults (Ford andKensinger,

2014), the inverse relationship we observed between functional

and structural amygdala-mPFC connectivity is not immediately

intuitive. One possibility is that more effective communication

between the amygdala and mPFC (as indexed by higher RSFC)

may depend on pruning the structural connections between the

two regions (as indexed by lower probabilistic tract strength).

Another possibility is that the two measures may differentially

weight amygdala-to-mPFC versus mPFC-to-amygdala projec-

tions, and projections of different directionality may play opposite

roles in promoting risk tolerance. An important aim for future

research should be to understand the undoubtedly complex rela-

tionship betweenRSFCandprobabilistic tractographymeasures.

Though most of our brain markers, including node strength,

RSFC, and GMV, were significant for both the right and left

amygdala, the association between risk tolerance and amyg-

dala-mPFC tract strength was significant only in right hemi-

sphere. Though we did not have hypotheses about hemispheric

lateralization, much previous work has suggested potential

hemispheric specialization of the human amygdala. Previous

studies have argued that the right amygdala is more involved

in avoidance behavior and the left in approach, the right is

more involved in negative emotions and the left in positive (Baker

and Kim, 2004; Coleman-Mesches and McGaugh 1995), the

right in formation of emotional memory and the left in retrieval

(Sergerie et al., 2006), and the right in rapid emotional processing

and the left in more elaborative (Sergerie et al., 2008). The later-

alization of functional or structural connections between the

amygdala and mPFC is less well studied, though two recent

studies have found that amygdala-mPFC WM tract strength in

the right hemisphere is more strongly associated with anxiety

than the left (Eden et al., 2015; Kim et al., 2016).

To our knowledge, this is the highest-powered study to date

to investigate the multimodal (context-independent) neural

markers of risk tolerance. We found that structural features of

the amygdala, and functional and structural connectivity be-

tween the amygdala andmPFC, predicted risk tolerance. The di-

rection of these associations with risk aversion matches that
Neuron 98, 394–404, April 18, 2018 399



Table 1. Summary of Regression Analyses between Each of Brain Measures and Alternative Risk Estimates

Expected Utility Model The Percentages (%) of Participants’ Choices Mean-Variance Model

risk tolerance

% of risky choices

over all probability

% of risky choices on

small probabilities

% of risky choices on

intermediate probabilities

% of risky choices

on large probabilities

Markowitz’s risk-

return parameter

Weber’s risk-

return parameter

Association with the node strength of amygdala

Left

hemisphere

r = 0.265, p = 0.007* r = 0.256, p = 0.009* r = 0.154, p = 0.118 r = 0.256, p = 0.009* r = 0.135, p = 0.173 r = �0.226, p = 0.021* r = �0.270, p = 0.006*

Right

hemisphere

r = 0.261, p = 0.007* r = 0.262, p = 0.007* r = 0.176, p = 0.073 r = 0.266, p = 0.006* r = 0.119, p = 0.230 r = �0.227, p = 0.021* r = �0.270, p = 0.006*

Association with functional connectivity between amygdala and MPFC

Left

hemisphere

r = 0.434, p < 0.001* r = 0.406, p < 0.001* r = 0.249, p = 0.011* r = 0.423, p < 0.001* r = 0.171, p = 0.083 r = �0.397, p < 0.001* r = �0.392, p < 0.001*

Right

hemisphere

r = 0.424, p < 0.001* r = 0.414, p < 0.001* r = 0.316, p = 0.001* r = 0.400, p < 0.001* r = 0.213, p = 0.030* r = �0.367, p < 0.001* r = �0.336, p < 0.001*

Association with white matter tract strength between amygdala and MPFC

Left

hemisphere

r = �0.140, p = 0.155 r = �0.082, p = 0.406 r = �0.170, p = 0.084 r = �0.140, p = 0.153 r = 0.197, p = 0.044* r = 0.147, p = 0.135 r = 0.108, p = 0.271

Right

hemisphere

r = �0.278, p = 0.004* r = �0.238, p = 0.015* r = �0.209, p = 0.033* r = �0.290, p = 0.003* r = 0.049, p = 0.617 r = 0.234, p = 0.016* r = 0.260, p = 0.007*

Association with GMV in amygdala

Left

hemisphere

r = 0.343, p = 0.001* r = 0.269, p = 0.006* r = 0.298, p = 0.002* r = 0.268, p = 0.006* r = 0.054, p = 0.586 r = �0.323, p = 0.001* r = �0.309, p = 0.001*

Right

hemisphere

r = 0.270, p = 0.006* r = 0.182, p = 0.065 r = 0.237, p = 0.015* r = 0.187, p = 0.058 r = 0.001, p = 0.994 r = �0.224, p = 0.022* r = �0.225, p = 0.022*

*p < 0.05.
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Table 2. Summary of Linear Regression Models with Each of the Measures Individually and Together

Model with Only

Node Strength

Model with

Only RSFC

Model with

Only GMV

Model with Only

Tract Strength

Model with All

Brain Variables

Model for left amygdala

Constant �8.79E-12 (0.017) �2.21E-10 (0.016) 6.280E-12 (0.016) �9.26E-12 (0.017) �2.04E-10 (0.015)

Node strength 0.008 (0.003)** – – – �0.001 (0.003)

RSFC – 0.652 (0.131)*** – – 0.645 (166)***

GMV – – 1.678 (0.487)** – 1.552 (0.446)**

Tract strength – – – �0.141 (0.097) �0.003 (0.089)

R2 0.07 0.188 0.101 0.02 0.274

Model for right amygdala

Constant �1.03E-11 (0.017) 1.070E-11 (0.016) 6.762E-11 (0.017) �4.51E-08 (0.017) �3.25E-08 (0.015)

Node strength 0.008 (0.003)** – – – 0.004 (0.003)

RSFC – 0.719 (0.147)*** – – 0.537 (0.163)**

GMV – – 1.384 (0.510)** – 1.087 (0.462)*

Tract strength – – – �0.296 (0.099) ** �0.214 (0.092)*

R2 0.065 0.183 0.065 0.077 0.273

Data are given as unstandardized coefficients, B (standard errors). Coefficients significantly different from zero indicated by asterisks: *p < 0.05;

**p < 0.01;***p < 0.001. RSFC, resting-state functional connectivity; GMV, gray matter volume; R2, the amount of variance explained by the model.
observed previously between these same markers and anxiety.

These results further reinforce a key role for interactions between

amygdala and mPFC in value-based decision making, particu-

larly in the context of risk. Based on these results, to the extent

that experimental manipulations (such as lesions or brain stimu-

lation) altered functional or structural connectivity between

amygdala andmPFC, we would expect that these manipulations

also change risk tolerance in the according direction. In addition,

if further refined and validated, the biomarkers observed here

might someday prove useful in predicting individual differences

in risk tolerance and risk-taking behavior.
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(kable@psych.upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Participants were recruited as part of the Retraining Neurocognitive Mechanisms of Cancer Risk Behavior (RNMCRB) study. For the

RNMCRB study, participants were randomized to receive either 10 weeks of adaptive cognitive training (Lumosity games) or non-

adaptive, untargeted cognitive stimulation (simple computerized video games) and underwent pre- and post-intervention brain

scans. The scanning session consisted of high-resolution T1-weighted anatomical MRI, RS-fMRI, DTI, and fMRI during both risk

tolerance and delay discounting tasks. The exclusion criteria for this study were: 1) history of brain injury, 2) history of psychiatric

or substance disorders, 3) current use of psychotropic medication, 4) current use of chewing tobacco, snuff, or smoking cessation

products, 5) left-handedness, and 6) intellectual disability (<90 score on Shipley’s IQ test). As the RNMCRB study was designed to

assess changes in decision-making in response to cognitive training, people with extreme decision preferences, at floor or ceiling

on our assessments, were also excluded from participating in the study (discount rate k < 0.0017 or k > 0.077; risk tolerance

a < 0.34 or a > 1.32; these criteria were the estimated 10th and 90th percentiles of the normal range in discount rate and 5th and

95th percentiles of the normal range in risk tolerance). A previous report has described the main trial outcomes, which found no effect

of cognitive training relative to the active control on brain activity, decision-making or cognitive performance (Kable et al., 2017). All

study procedures were approved by the Institutional ReviewBoard of the University of Pennsylvania. All participants provided written

informed consent.

Here we analyzed only the baseline (pre-treatment) data. Of the full cohort at baseline (n = 166), 145 had T1-weightedMRI, RS-fMRI

and DTI images. Thirty-seven individuals out of 145 were excluded because of (i) low DTI quality (temporal signal to noise ratio,

TSNR < 6.47 [suggested by Roalf et al., 2016]; n = 17), (ii) excessive head motion (>2.5 mm of translation or 2.5� of rotation

and >0.31 mm [>2 SD from the group mean] for mean frame-wise displacement [FD; Power et al., 2012]) on RS-fMRI (n = 15);

and (iii) outliers (> 3 SD from the group mean) on the degree of risk tolerance (n = 2) and node strength (n = 3). Therefore, 108 par-

ticipants (64/44males/females; age [mean ± SD], 24.36 ± 4.69 years; IQ, 111.24 ± 6.60; risk tolerance a, 0.69 ± 0.31) were used in the

final analysis.

METHOD DETAILS

Risk tolerance task
Participants chose between a smaller reward available with certainty and a larger reward available with some risk for each of 120

trials. The smaller-certain reward was fixed at 100% chance of $20 and the larger-risky reward was varied from trial to trial. The
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magnitude of the larger-risky reward varied from$21 to $85 and the probability of obtaining it varied from 9% to 98%. At the end of the

experiment, participants received the item they chose on one randomly selected trial from the choice tasks (delay discounting and

risk tolerance), in addition to visit compensation. If the trial chosen was from the risk tolerance task and the participant selected the

risky option, the gamble was resolved by the roll of a die. The primary behavioral outcome was the subject’s degree of risk tolerance.

Risk tolerance was estimated by fitting a logistic regression that assumes a person’s decisions are a stochastic function of the dif-

ference in subjective value between the two options. Participants’ individual choice data were fit with the following logistic function

using maximum likelihood estimation:

P1 =
1

1+ expð � bðSV1 � SV2ÞÞ; P2 = 1� P1

where P1 refers to the probability that the participant chose the risky option and P2 refers to the probability that the participant chose

the safe option. SV1 and SV2 refer to the participant’s estimated subjective value of the risky option and the safe option respectively.

b was used as a scaling factor and was fitted for each subject. For our gambles, in which there is only one reward with a given prob-

ability (p, with a 1�p chance of no reward), we assumed that SV (subjective values for the risky option and safe option, respectively)

followed the functional form of expected utility, a power-law function of the reward amount (A) and the probability (p) of winning:

SVEU =p 3Aa

where a is the participant’s degree of risk tolerance. Risk tolerance a’s were log-transformed to normalize the distribution before

subsequent statistical analysis. Larger values of a indicate a greater degree of risk tolerance or a lesser degree of risk sensitivity;

a > 1 (< 1) indicates risk seeking (aversion) and a = 1 indicates risk neutrality (i.e., participants choose according to expected value).

To confirm that our findings were robust to the specification of risk tolerance, we also conducted sensitivity analyses using several

alternative measures of risk attitudes. We fit two alternative models of subjective value based on the risk-return or mean-variance

frameworks. In the classic formulation of risk-return models, SV is a function of the expected value (EV) and variance (Var) of the

gamble, given a risk aversion parameter b.

SVRR =EV � bRR 3Var
EV =p3A
Var =p3 ðA� EVÞ2 + ð1� pÞ3 ðA� 0Þ2

An alternative formulation uses the coefficient of variation (CV) rather than the variance (Weber et al., 2004).

SVRRW =EV � bRRW 3CV
CV =

ffiffiffiffiffiffiffiffi

Var
p

EV

In both of these cases, bmeasures a person’s aversion to risk, with higher values indicating more risk aversion and less risk toler-

ance. We also used the percentage of risky choices, both over all choices (n = 120) and in probability tertiles (0% < p% 33%, n = 25;

33% < p % 66%, n = 64; 66% < p, n = 31), as a model-free measure of risk tolerance.

Image acquisition
All MRI data were acquired using a Siemens 3T Trio scanner (Siemens, Erlangen, Germany). T1-weighted images were obtained

with a magnetization-prepared rapid gradient echo (MPRAGE) sequence [repetition time (TR)/echo time (TE) = 1630/3.11 ms, voxel

size = 0.94 3 0.94 3 1.0 mm3, 160 axial slices]. RS-fMRI data were collected using an echo planar imaging (EPI) sequence

(TR/TE = 3000/25 ms; voxel size = 33 33 3 mm3; 53 interleaved axial slices with no gaps; 160 volumes during 8 min and 6 s). During

RS-fMRI scanning, participants were asked to keep their eyes open andmaintain fixation. DTI data were acquired using a single-shot

spin echo EPI sequence (TR/TE = 8000/82 ms, voxel size = 1.883 1.883 2 mm3, 70 interleaved slices, GRAPPA factor = 3, 30 diffu-

sion directions with b-values of 1000 s/mm2 and 1 image with b = 0 s/mm2).

QUANTIFICATION AND STATISTICAL ANALYSIS

RS-fMRI analysis
RS-fMRI data were preprocessed using the Data Processing & Analysis for (Resting-State) Brain Imaging toolbox inMATLAB (DPABI;

Yan et al., 2016) and SPM8 (http://www.fil.ion.ucl.ac.uk/spm). After discarding the first 4 scans, slice-timing correction, motion
e2 Neuron 98, 394–404.e1–e4, April 18, 2018
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realignment, nuisance signal correction, and spatial normalization to the MNI template were performed. For nuisance signal correc-

tion, the following nuisance parameters were included as regressors within the general linear model; 6 motion parameters and their

first derivatives, 5 principal components extracted from a combined white matter (WM)/ cerebrospinal fluid (CSF) mask using the

CompCor method (Behzadi et al., 2007), and a linear trend term. Next, spatial smoothing (FWMH kernel: 6 mm) and temporal

band-pass filtering (0.01–0.1 Hz) were performed.

We used the 90-parcel AAL template (Tzourio-Mazoyer et al., 2002) to examine RSFC, as this template provides adequate

coverage of both cortical and subcortical regions, including the amygdala. The mean time courses in each AAL parcel (as a node)

were extracted, correlated with each other (using Pearson’s correlation coefficients as edges), and converted to z-scores using

Fisher’s r-to-z transformation, in order to generate a 90 3 90 connectivity matrix per subject. These connectivity matrices were

used to calculate node strength. Node strength is a measure that quantifies the importance/centrality of a node through the strength

of its connections to all other nodes in a network (Rubinov and Sporns, 2010). We calculated node strength by summing the absolute

values of all weighted edges (i.e., correlation coefficients) for a given node to quantify the total connectivity of a node. To define the

nodes associated with individuals’ risk tolerance, we performed partial correlations (covariates: age, sex, IQ, and motion indexed by

mean FD) between node strength and risk tolerance. To address multiple comparisons in this analysis, we calculated a false-positive

adjusted threshold (p < 1/90 = 0.011, where 90 is the total number of nodes) that has been used in many previous studies that

compare local network measures estimated from graph-theoretical analysis (Lynall et al., 2010; Cocchi et al., 2012).

To examine the connectivity of significant nodes (i.e., amygdala per hemisphere; Figure 2A), we generated seed-to-voxel FCmaps.

To determine the regions showing an association between these seed FC maps (seeded by each amygdala) and risk tolerance, we

performed multiple regression analysis at the voxel level, while controlling for age, sex, IQ, and mean FD. The results were corrected

for multiple comparisons to a significance level of p < 0.05 (height threshold of p < 0.001, uncorrected, combined with extent

threshold of p < 0.05) by the AlphaSim program as implemented in the DPABI software (DPABI_V2.3_170105). We note that the

bug reported by Eklund et al. (2016) had been fixed in the software version used in this study (see http://rfmri.org/dpabi).

DTI analysis
DTI data were preprocessed using the Pipeline for Analyzing braiN Diffusion imAges toolbox in MATLAB (PANDA; Cui et al., 2013),

which uses processing functions of established packages, such as FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and the Diffusion Toolkit

(https://www.nitrc.org/projects/trackvis/). Briefly, a brain mask was estimated using b0 images. Diffusion images were registered to

the b0 image using an affine transformation to correct the eddy current-induced distortions and simple head-motion. Fiber tracts

were estimated using bedpostX (Behrens et al., 2003) with two crossing fibers per voxel. Then, probabilistic tractography analysis

was performed to assess structural connectivity from seed to target using probtrackX (Behrens et al., 2007) in FSL with default op-

tions (5000 streams per each voxel seed, 0.5 mm step lengths, curvature thresholds = 0.2). The target masks were defined by

RS-fMRI analysis (i.e., the clusters showing significant correlations between risk tolerance and RSFC to each amygdala) at a height

threshold of p < 0.005, uncorrected, combinedwith an extent threshold at a corrected p < 0.05. To define andmeasure the integrity of

the structural tract from DTI, we used a slightly lower cluster-forming threshold because tractography analysis is less reliable with

very small clusters. The target and seed masks were transformed fromMNI space to each subject’s native space, where probtrackX

was ran. This tractography analysis identifies the most likely pathway between each seed voxel and each target voxel by calculating

the probability of connectivity between them; that is, the values in voxels on resulting images represent the number of sampled

streamlines that successfully reached the target region. We normalized values in voxels by dividing by the total number of sampled

streamlines and thresholded at 10% to exclude spurious connections. Note that we observed similar results under a wide range of

thresholds, from 2% to 30%. We then took a mean value for all voxels within the defined tract, which is widely used as a measure of

tract strength between two brain regions (Johansen-Berg and Rushworth, 2009; Croxson et al., 2005). Because the tract strength

values were non-normally distributed, they were log-transformed before subsequent statistical analysis. We performed partial cor-

relation (covariates: age, sex, and IQ) between risk tolerance and tract strengths.

Some previous studies have used FA values, rather than tract strengths, to investigate the link between white matter tracts and

behavior (Clewett et al., 2014; Kim et al., 2016; Leong et al., 2016). Thus, we also performed partial correlation (covariates: age,

sex, and IQ) between FA values extracted from each tract and tract strengths and risk tolerance. This exploratory analysis showed

that the tract strength in the right amygdala–mPFC tract that showed a significant associationwith risk tolerance also had a significant

positive correlation with its FA value (r = 0.386, p < 0.001), though the FA value itself had no association with risk tolerance (r = 0.003,

p < 0.978; not shown).

T1-MRI analysis
T1 data were segmented into GM, WM, and CSF tissue maps in native space using SPM8. Each individual’s three tissue maps were

combined into a single volume and the combined volumewas registered to a singleMNI-space template using the DRAMMSdeform-

able registration package (Ou et al., 2011; https://www.cbica.upenn.edu/sbia/software/dramms/). Deformation field calculated from

this spatial registration was then applied to segmented images in order to generate mass-preserved volumetric maps, named

Regional Analysis of Volumes Examined in Normalized Space (RAVENS) maps (Davatzikos et al., 2001). In RAVENSmaps, the tissue

density reflects the amount of tissue present in each participant’s image at a given location, after mapping to the common template
Neuron 98, 394–404.e1–e4, April 18, 2018 e3

http://rfmri.org/dpabi
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.nitrc.org/projects/trackvis/
https://www.cbica.upenn.edu/sbia/software/dramms/


space. The GM RAVENS maps were smoothed with 6-mm FWMH kernel. We performed partial correlation (covariates: age, sex, IQ,

and total intracranial volume [TIV]) between risk tolerance and GMV of amygdala extracted from RAVENS map.

For the exploratory whole-brain VBM analysis, we conducted multiple regression on the smoothed GM RAVENS image with risk

tolerance as a covariate of interest and age, sex, IQ and TIV as covariates of no interest. To correct for multiple comparisons, we

applied a height threshold of p < 0.001 (uncorrected) and a cluster extent threshold of p < 0.05 using AlphaSim (Figure S1, Related

to Figure 5).

Given previous reports of a positive relationship between risk tolerance and rPPC GMV (Gilaie-Dotan et al., 2014; Grubb et al.,

2016), we also conducted an exploratory ROI analysis with an rPPC ROI defined independently based on Gilaie-Dotan et al.

(2014), using the mask at https://yale.app.box.com/v/levylab-gilaie-dotan-etal-2014.

Linear regression analysis to estimate brain predictors of risk tolerance
We performed linear regression analyses to examine the ability of brain variables to predict an individual’s risk tolerance using SPSS.

Before statistical analysis, the amygdala GMV extracted from RAVENS map was divided by TIV and the effects of age, sex, and IQ

were regressed out of all brain variables. Then, a linear regression analysis with each brain variable alone and with all brain variables

together (node strength, RSFC extracted from seed-based FC result, GMV, and tract strength of amygdala) was performed sepa-

rately for each hemisphere.

DATA AND SOFTWARE AVAILABILITY

The full dataset will be made available upon request.
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Supplemental Data 
Figure S1. Related to Figure 5. 
 

 
Figure S1. Regions showing association between risk tolerance and gray matter volume 
(GMV) at whole-brain voxel level. Risk tolerance had higher association with GMV in 
bilateral amygdalae than GMV in any other regions (yellow, a height threshold of p<0.001, 
uncorrected; red, a height threshold of p<0.005, uncorrected; all clusters survive correction 
for multiple comparisons using an extent threshold of p<0.05).  
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